An Efficient Method of Partitioning High Volumes of Multidimensional Data for Parallel Clustering Algorithms
نویسندگان
چکیده
An optimal data partitioning in parallel/distributed implementation of clustering algorithms is a necessary computation as it ensures independent task completion, fair distribution, less number of affected points and better & faster merging. Though partitioning using Kd-Tree is being conventionally used in academia, it suffers from performance drenches and bias (non equal distribution) as dimensionality of data increases and hence is not suitable for practical use in industry where dimensionality can be of order of 100’s to 1000’s. To address these issues we propose two new partitioning techniques using existing mathematical models & study their feasibility, performance (bias and partitioning speed) & possible variants in choosing initial seeds. First method uses an n-dimensional hashed grid based approach which is based on mapping the points in space to a set of cubes which hashes the points. Second method uses a tree of voronoi planes where each plane corresponds to a partition. We found that grid based approach was computationally impractical, while using a tree of voronoi planes (using scalable K-Means++ initial seeds) drastically outperformed the Kd-tree tree method as dimensionality increased.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1609.06221 شماره
صفحات -
تاریخ انتشار 2016